Test plan
Version 2.0

Malan

Software Engineering Project

Instructor: Antti Tevanlinna

Group member:

Kalle karkkainen
Jukka Forsgren
Alberto Marquinez

Sami Sierla
Jianling Zhang
Table of content
11
Introduction

1.1
Testability
1
1.2
Deliverables
1
1.2.1
Test plan
1
1.2.2
Test case specification
1
1.2.3
Test report
1
2
The testing process
2
2.1
Test Planning
2
2.2
Test Implementation
2
2.2.1
Identify conditions
2
2.2.2
Design test cases
3
2.2.3
Build tests
3
2.2.4
Execute tests
3
2.2.5
Check results
3
3
Test level
4
3.1
The level of V-module
4
3.2
The method of testing
4
3.2.1
Unit (module, component) testing
5
3.2.2
Integration testing
5
3.2.3
System testing
6
3.2.4
Acceptance testing
7
4
Timetable
7
5
References
8

Introduction

Koksi is the TTK-91 assembler has been used in the course 581305-6 Computer Organization I (2 cu). We will make new vision of the KOKSI according the customer Teemu Kerola requirements.

Software testing is a critical element of software quality assurance and represents the ultimate review of specification, design, and coding. Our objective of testing Koksi is to design tests that systematically uncover different classes of errors and do so a minimum amount of time and effort.

1.1 Testability

In the idea, a software engineer designs a computer program, a system, or a product with “testability” in mind. Software testability is simply how easily a computer can be tested. The following checklist that provides a set of characteristics that leads to testable software.

· Operability. The better it works, the more efficiently it can be tested.

· Observablity. What you see is what you test.

· Controllability. The better we can control the software, the more the testing can be automated and optimised.

· Decomposability. By controlling the scope of testing, we can more quickly isolate problem and perform smarter retesting.

· Simplicity. The less there is to test, the more quickly we can test it.

· Stability. The fewer the changes, the fewer the disruptions to testing.

· Understandability. The more information we have, the smarter we will test.

1.2 Deliverables

The three documents will be delivered during the whole test process: test plan, test case specifications and test results.

1.2.1 Test plan

A test plan is a project plan for testing, so set goal, define resources and decide “how”. In particular,

Do not list he test case. Instead, define the functionality to be tested and the test methods used.

1.2.2 Test case specification

The test case specification is started by created a full set of test cases for one functional area of Koksi. Using the test plan as a guide, we should be able to design a set of test cases meeting the goals set in the test plan (coverage and exit criteria in particular). A good test set is clearly organized, easy to maintain, well documented, as small as possible, and finds as many bugs as possible. A level of test case detail should be such that it is maintainable (not too detailed), but still repeatable (by group and the inspector).

1.2.3 Test report

The test cases must be executed and results reported. First of all, a test log should be produced. A test log lists test case run, who ran it and when, and the result of execution (pass/fail). If the test case passed, the log can be “OK”. If the test case fails, there has to be a reference to the bug report created. The last task is writing a final report on all the testing activities. First, report the effort made and results achieved. Then, take the test plan and compare it against the actual testing activities and results and comment on any discrepancies. Choose and create some information progress charts and explain the choices. Also remember to evaluate the quality of the testing.

2 The testing process

[image: image1.wmf]

Figure 1: The test process

2.1 Test Planning

The goal of test planning activity is to plan certain testing activities (e.g. system testing of a software product) and make relevant decisions concerning the testing effort. These decisions are documented in a test plan specific to a level of testing, or for a project, depending on the size of the effort and the approach organization is taking. These test plans should state how the test strategy and project test plan apply to that testing and state any exceptions to them.

2.2 Test Implementation

After test planning has been made, test process can be seen as having at least five distinct tasks. These tasks include identifying test conditions, designing test cases, building tests, executing tests and checking the results.

2.2.1 Identify conditions

Identifying conditions include determining what is to be tested. A simple condition is Boolean variable or a relational expression, possibly proceed with one NOT (“(”) operator. A compound condition is composed of two or more simple conditions, Boolean operators, and parentheses. Formal testing techniques mostly concentrate on this task. Sometimes a brainstorming session is also good for this.

Specifying test cases (identifying the most important test conditions and designing good test cases) requires a good understanding of all the issues involved and skill in balancing them. These intellectual tasks govern the quality of test cases and should be emphasized.

Execution is predominantly a clerical task. Furthermore, executing and comparing are activities that are repeated many times, whereas test cases are specified basically once. However, when the software evolves, functions are changed and new features introduced, the test cases need maintenance, too.

2.2.2 Design test cases

Designing test cases include determining how the test conditions identified are going to be exercised. For each of the tests its objective, software's initial state, inputs and expected outcomes must be defined.

Designing good test cases is a skill. A test case should exercise several test conditions but to be maintainable it should not be too big or too complex. When considering the output, think of it in the broad sense of all that has been changed, deleted, as well as not changed. It is frequently necessary to design not only individual test cases but also whole sets of test cases each with different objectives. For example, regression tests, performance tests, and detailed tests of a particular function.

2.2.3 Build tests

Building test cases is the actual implementation of the designed cases and creating the scripts and data needed. This task involves making the test cases a reality - writing test procedures or test scripts, creating or acquiring the test data and implementing the expected results. These are all pre-requisites to test execution.

2.2.4 Execute tests

The purpose of this activity is to execute all of the test cases. This can be done either manually or with the use of a test execution automation tool (provided the test cases have been designed and built as automated test cases in the previous stage). The order in which the test cases are executed is significant. The most important test cases should be executed first. In general, the most important test cases are the ones that are most likely to find the most serious faults but may also be those that concentrate on the most important parts of the system. There are a few situations in which we may not wish to execute all of the test cases. When testing just fault fixes we may select a subset of test cases that focus on the fix and any likely impacted areas. If too many faults are found by the first few tests one may decide that it is not worth executing the rest of them, at least until the faults found so far have been fixed. In practice time pressures may mean that there is time to execute only a subset of the specified test cases - planning of different test suites helps in the actual execution.

2.2.5 Check results

Test recording activity is done in parallel with test execution. To start with, the versions of the software under test and the test specification being used need to be recorded. Then for each test case the actual outcome should be recorded. The actual outcome should be compared against the expected outcome and any discrepancy found logged and analysed in order to establish where the fault lies. It may be that the test case was not executed correctly in which case it should be repeated. The fault may lie in the environment set-up or be the result of using the wrong version of software under test. The fault may also lie in the specification of the test case for example, the expected outcome could be wrong. Of course the fault may be in the software under test. In these cases the fault should be fixed and the test case executed again. The records made should be detailed enough to provide an unambiguous account of the testing carried out. Also, when checking the results, the results should be compared to higher-level objectives. If needed level of testing has not been established, more test conditions may need to be identified and tested.

3 Test level

This chapter includes testing level and testing methods.

3.1 The level of V-module

[image: image2.wmf]

Test Planning (at each Test Level)

Test Implementation

Identify

Condi

tions

Design

Test Cases

Build

Tests

Execute

Tests

Check

results

Figure 2 V-module testing

3.2 The method of testing

The classical distinction of tests techniques is black-box techniques and white-box techniques. Test techniques are classified according to whether the test rely on information about how the software has been designed and coded (white-box) or instead only rely on the input/output behavior, without no assumption on what happens within the program. Black-box testing enables the software engineer to derive sets of input conditions that will fully exercise all functional requirements of the program. White-box testing is the test case design method that uses the control structure of the procedural design to derive test cases. Our group will use white-box techniques for the unit testing and use black-box techniques for integrate testing, system testing.
3.2.1 Unit (module, component) testing

In the unit testing, the software is tested on the level of source code. The term “unit” refers to a linguistic entity that implements a logical set of services. Often the units are developed independently by different programmers, and can therefore also be tested separately. Unit testing is the basis for the subsequent testing phases at higher levels.

For white-box testing the test case design approaches take the code as a basis and identify cases executing as much of the code as possible. Condition testing is a test case design method that exercises the logical conditions contained in a program module. Condition testing has two advantages (comparing the basic path testing): broaden testing coverage and improve quality of white-box testing. The possible types of components in a condition include a Boolean operator, a Boolean variable, a pair of Boolean parentheses (include a simple or compound condition), a relational operator or an arithmetic expression. Branch testing is probably the simplest condition testing strategy. For compound condition C, the true and false branches of C and every simple condition in C need to be at least once. Condition Coverage is internal structure of structured control predicates is taken into account. Both true and false values of each predicate is exercised. Example: (a<0 || b>0) -> (true, false) and (false, true). Condition converge is 60 %.
Process of testing:

· Decide what the component should do.

· Design the component. This can be done formally or informally, depending on the complexity of the component.

· Write unit tests to confirm that behavior. At first, the tests will not compile, since the code they test is not yet written. Your focus here is on capturing the intent of the component, not on the implementation.

· Start coding the component to the design. Refactor as needed.

· When the tests pass, stop coding.

· Consider other ways the component can break; write tests to confirm and then fix the code.

· Each time a defect is reported, write a test to confirm. Then fix the code.

· Each time you change the code, rerun all tests to make sure you haven't broken anything.

Unit testing would be necessary to build a test stub to test the components directly. The testing enviroment has to run within the context to test the individual objects.

The importance of testing is stressed in the following quote:

The fewer tests you write, the less productive you are and the less stable you code becomes. The less productive and accurate you are, the more pressure you feel. You would see the value of the immediate feedback you get from writing and saving and rerunning your own unit tests.
3.2.2 Integration testing

Integration testing is the process of verifying the interaction between system components. Classical integration testing strategies, such as top-down or bottom-up, are used traditional, hierarchically structured systems. Integration testing can be organized as a "big bang" by assembling all the modules together for execution. A better way is to test the system incrementally, by composing modules into subsystems either top-down or bottom-up with respect to the modular architecture of the system. Designers, analysts, or independent testers usually do the integration testing.

In functional, black-box testing, the system is tested on the level of inputs and outputs at its interface, with no knowledge of the system's internal details (such as source code). Equivalence partitioning method will be used in this testing level. Equivalence partitioning is a black-box testing method that derives the input domain of a program into classes of data from which test case can be derived. Typical, an input condition is either a specific numeric value, a range of values a set of related values, or Boolean condition. The branch coverage is 50%. Bottom-up integration testing begins construction and testing with atomic modules (which at the lowest levels in the program structure). The bottom-up integration strategy can be implemented with following steps:
· Low-level modules are combined into builds that perform a specific software sub-function.

· A driver (a control program for testing) is written to coordinate test case input and output.

· The builds is tested.

· Drivers are remover and builds are combined moving upward in the program structure.

3.2.3 System testing

At the system testing level, the whole system (including hardware, software, databases, external devices, etc.) is tested as a whole under the assumption that the main elements, especially the software part, have already been independently tested.

Boundary value analysis (BVA) will be used in this testing level. BVA is a test case design technique that complements equivalence partitioning. Rather than selecting any element of an equivalence class, BVA leads to the selection of test cases at the “edges” of class. Rather than focusing solely on input condition, BVS derives test cases from the output domain as well. Performance testing is to determine whether the system meets its performance requirements, it designed to test run-time performance of software within the context of an integrated system. Statement converge is 50%.
3.2.3.1 Functional testing

· Functional testing is the system testing of an integrated, black box, and application against its functional requirements

3.2.3.2 Non-functional testing

· Usability (User interface) testing

There are three contents for creating a series of generic tests for graphical user interface: window, pull-down menus and mouse operations, and data entry.

· Documentation testing

The documentation testing is involved documentation review and documentation tests. The following figure shows the process of documentation testing:

[image: image3.wmf]

Figure 3 The process of documentation testing

3.2.4 Acceptance testing

The final stage before taking the system into full operation is to let the customers and users check that the system fulfils their actual needs. Acceptance testing usually takes the form of beta testing, which is conducted in a real environment, at the customer's site by the end users of the system. Acceptance testing is not necessarily based on any formal document but instead on the users' mental model of the system's behaviour.

Our group will not do the acceptance testing because the limit of time.
4 Timetable

	Test level
	Starting date
	End date
	Person
	Amount of time

	Unit
	27.02.04
	25.03.04
	all group members
	2 h x number of classes

	Integration
	19.03.04
	01.04.04
	Jianling and Kalle
	4 h x number of classical classes

	System
	02.04.04
	23.04.04
	Jianling and Kalle
	40 h

	Total
	
	
	
	(40 + 2 x number of classes + 4 x number of classical classes) h

References

· Book: Roger S. Pressman, Software engineering – A practitioner’s approach, 4th edition. McGraw-Hill, 1997

· Link:http://www.donald-firesmith.com/index.html?Components/WorkUnits/Activities/Testing/Testing.html~Contents
· Lecture notes: http://www.soberit.hut.fi/T-76.613/

Review for user guide, installation, Tkk91 language specification and project summary.

Test plan review

Implement document review

Design document review

Requirements document review

PAGE
5

